百香果nlp(nlp.100xg.cn):欢迎提交人工智能(AI)、自然语言处理(NLP )、大数据、智能硬件、云计算、5G、物联网、前沿科技相关的公司、术语、项目、产品领域词条。快速提交,并将在这里展现。

长短期记忆网络(LSTM)是一种经常性神经网络,它经过优化,可以从相关事件之间的时间相关数据中学习,这些数据可能具有未定义或未知的时间长度。他们特殊的架构允许持久性,给ANN带来“记忆”。LSTM网络最近在手写识别和自动语音识别方面取得了突破。

介绍

长短期记忆网络,是一种时间递归神经网络,适合于处理和预测时间序列中间隔和延迟相对较长的重要事件。它是一种含有LSTM区块神经网络,在文献或其他资料中LSTM区块可能被描述成智能网络单元,因为它可以记忆不定时间长度的数值,区块中有一个“门”能够决定输入值是否重要到能被记住以及能不能被输出。

在大规模声学建模和词性分类方面,长短期记忆网络被证明拥有优异性能。

发展

Hochreiter 和 Schmidhuber(1997) 提出了长短期记忆 (Long short - Short-Term Memory, LSTM),克服了循环神经网络 (RNN) 的误差回流问题。LSTM 是基于循环网络和基于梯度的学习算法,LSTM 引入自循环产生路径,使得梯度能够流动。

Greff 等人 (2017) 对标准 LSTM 和 8 个 LSTM 变体进行了大规模分析,分别用于语音识别、手写识别和复调音乐建模。他们声称 LSTM 的 8 个变种没有显著改善,而只有标准 LSTM 表现良好。

Shi 等人 (2016b) 提出了深度长短期记忆网络 (DLSTM),它是一个 LSTM 单元的堆栈,用于特征映射学习表示。


       文章原创度检测工具
       马丁·路德骂人生成器
       诺基亚短信生成器
       彩虹屁生成器
       藏头诗生成器
       爱情小说生成器
       狗屁不通文章生成器
       文章克隆器
       营销文案生成器
       诗歌生成
       机器写文章
       Dreamwriter写稿机器人
       人工智能写作
       SmartNovel
       写作机器人